
Custodia Security

Size v1.5 Review
Conducted By: Ali Kalout, Ali Shehab



Contents
Contents 2
1. Disclaimer 3
2. Introduction 3
3. About Size 3
4. Risk Classification 4

4.1. Impact 4
4.2. Likelihood 4
4.3. Action required for severity levels 5

5. Security Assessment Summary 5
6. Executive Summary 5
7. Findings 7

7.1. Medium Findings 7
[M-01] Initialize::executeReinitializeV1_5 could be DOSed by donating ATokens
to the contract 7

7.2. Low Findings 8
[L-01] GetV1_5ReinitializeDataScript is not batching users, forcing it sometimes
to revert 8



1. Disclaimer

A smart contract security review cannot ensure the absolute absence of
vulnerabilities. This process is limited by time, resources, and expertise and
aims to identify as many vulnerabilities as possible. We cannot guarantee
complete security after the review, nor can we assure that the review will
detect every issue in your smart contracts. We strongly recommend
follow-up security reviews, bug bounty programs, and on-chain monitoring.

2. Introduction

Custodia conducted a security assessment of Size’s smart contract
following the implementation of v1.5 and the migration for it, ensuring the
proper implementation of both.

3. About Size

Size is a lending marketplace with unified liquidity across maturities.

Size is built on an order book model where offers are expressed as yield
curves, allowing efficient and continuous pricing of fixed-rate products while
maintaining unified liquidity.



4. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4.1. Impact

● High: Results in a substantial loss of assets within the protocol or
significantly impacts a group of users.

● Medium: Causes a minor loss of funds (such as value leakage) or
affects a core functionality of the protocol.

● Low: Leads to any unexpected behavior in some of the protocol's
functionalities, but is not critical.

4.2. Likelihood

● High: The attack path is feasible with reasonable assumptions that
replicate on-chain conditions, and the cost of the attack is relatively
low compared to the potential funds that can be stolen or lost..

● Medium: The attack vector is conditionally incentivized but still
relatively likely.

● Low: The attack requires too many or highly unlikely assumptions, or
it demands a significant stake by the attacker with little or no
incentive.



4.3. Action required for severity levels

● Critical: Must fix as soon as possible
● High: Must fix
● Medium: Should fix
● Low: Could fix

5. Security Assessment Summary

Repository: SizeCredit/size-solidity-private
Commits:

● 0e6f32a270b2c2ca940f35b90ce8ce65a172de23 (PR 5)
● 4d8fbfc488e79002e2514c0087c3dcc6346c146b (PR 7)

6. Executive Summary

Throughout the security review, Ali Kalout and Ali Shehab engaged with
Size’s team to review Size. The review was held from Nov 12 to 16. During
this period, two issues were uncovered.

Findings Count

Severity Amount

Critical N/A

High N/A

Medium 1

Low 1

Total Finding 2



Summary of Findings

ID Title Severity Status

M-01 Initialize::executeReinitializeV1_5 could
be DOSed by donating ATokens to the contract

Medium Resolved

L-01 GetV1_5ReinitializeDataScript is not
batching users, forcing it sometimes to
revert

Low Resolved



7. Findings

7.1. Medium Findings

[M-01] Initialize::executeReinitializeV1_5 could be
DOSed by donating ATokens to the contract

Severity:
Medium

Description:
For the v1.5 migration, the protocol checks that the scaled supply of szTokens equals
the scaled balance of ATokens for the contract, this is using the following condition:
(newScaledTotalSupplyAfter - newScaledTotalSupplyBefore) !=
aToken.scaledBalanceOf(address(this))
This could be DOSed by sending any amount of ATokens to the contract, blocking the
migration.

Proof of Concept:
function testFork_ForkReinitializeV1_5Audit_ATokenDonationReinitializeDOS() public {

sizeFactory = _deploySizeFactory(owner);

_deployNewBorrowAToken();

USDC = sizeWethUsdc.data().underlyingBorrowToken;

IAToken aUSDC =

IAToken(sizeWethUsdc.data().variablePool.getReserveData(address(USDC)).aTokenAddress);

address aUSDC_holder = 0x4E32E08f3d8d1cAb474A489B4E31f8D3FD627abf;

vm.prank(aUSDC_holder);

aUSDC.transfer(address(sizeWethUsdc), 1e6);

Supply memory old;

_testFork_ForkReinitializeV1_5_migrate(

"base-production-weth-usdc", sizeWethUsdc, priceFeedWethUsdc, addressesWethUsdc, old,

true

);

}



Recommendations:
Have a more graceful condition, i.e. use < instead of !=.

7.2. Low Findings

[L-01] GetV1_5ReinitializeDataScript is not batching
users, forcing it sometimes to revert

Severity:
Low

Description:
The protocol uses GetV1_5ReinitializeDataScript to fetch the holders of the
Size v1.2 tokens, which uses vm.eth_getLogs, which fetches the holders from the
deployment block to the current block. However, this has a limit of 10,000 and will
sometimes reverts with the following error:
query exceeds max block range

Recommendations:
Batch the fetching process of holders to only do X blocks at a time, where X <= 10,000.


